Wat is Probabilistische computer calculatie

Probabilistisch computergebruik is een nieuw type computergebruik dat kan worden gebruikt voor AI. Het gebruikt de natuurkunde van de wereld om te berekenen en voorspellen. Dit gebeurt veel sneller en met veel minder energieverbruik.

Een vakgebied dat zich richt op het bouwen van systemen die onzekerheid aankunnen en ermee kunnen redeneren.

Maakt gebruik van probabilistische algoritmen, modellen en methoden.

Heeft als doel computers de wereld te laten begrijpen en erover te laten redeneren met onzekerheid, net zoals mensen dat doen.


Waarom is het belangrijk?

Complexiteit in de echte wereld: de meeste problemen in de echte wereld zijn inherent onzeker en onvolledig.

Mensachtig redeneren: Probabilistisch computergebruik stelt computers in staat om mensachtig redeneren na te bootsen in het licht van onzekerheid.

Betere besluitvorming: door onzekerheid te kwantificeren, kunnen computers beter geïnformeerde en robuustere beslissingen nemen.

Belangrijkste concepten en technieken


Probabilistische modellen

Bayesiaanse netwerken

Deze vertegenwoordigen relaties tussen variabelen en hun waarschijnlijkheid.

Bayesian Network

Bayesian netwerk


Markov-modellen

Dit zijn modelreeksen van gebeurtenissen en hun afhankelijkheden.

Afbeelding van Markov Model

Markov-model


Probabilistische programmeertalen

Dit zijn programeertalen die de specificatie van probabilistische modellen en automatische gevolgtrekking mogelijk maken.

Voorbeelden: Stan, PyMC3, Edward.

Monte Carlo-methoden:

Afbeelding van Monte Carlo Simulation

Monte Carlo-simulatie

Deze methoden simuleren willekeurige processen om waarschijnlijkheden en verwachtingen te schatten.

De onzekerheidskwantificering meet de onzekerheid in modelvoorspellingen en -uitvoer.


Toepassingen

Probabilistisch computergebruik kent een breed scala aan toepassingen:


Machine learning

Robuustere en interpreteerbare modellen bouwen.

Omgaan met ruisende en onvolledige gegevens.

Robotica: Robots in staat stellen beslissingen te nemen in onzekere omgevingen.

Computer vision: Beeld- en videoanalyse verbeteren door rekening te houden met onzekerheid.

Natuurlijke taalverwerking: Natuurlijke taal begrijpen en genereren met onzekerheid.

Gezondheidszorg: Medische gegevens analyseren om voorspellingen en beslissingen te doen.

Financiën: Financiële risico's modelleren en investeringsbeslissingen nemen.


Voordelen

Robuustheid: Probabilistische modellen kunnen omgaan met onzekerheid en ruis in gegevens.

Interpreteerbaarheid: Probabilistische modellen zijn vaak gemakkelijker te begrijpen dan deterministische modellen.

Aanpassingsvermogen: Probabilistische modellen kunnen zich aanpassen aan veranderende omgevingen en nieuwe informatie.


Uitdagingen

Computationele complexiteit: Probabilistische methoden kunnen computationeel duur zijn.

Modelcomplexiteit: Het bouwen van nauwkeurige en complexe probabilistische modellen kan een uitdaging zijn.

Gegevensvereisten: Probabilistische modellen vereisen vaak grote hoeveelheden gegevens


Wat zijn P-bits?

In tegenstelling tot conventionele computers, die 1'en en 0'en gebruiken om te berekenen, wordt probabilistisch rekenen gedaan met P-bits. Deze bits zitten tussen normale bits en Q-bits (kwantumbits, gebruikt in quantum computing)

Overeenkomsten

Probabilistische aard: Zowel P-bits als Q-bits vertonen probabilistisch gedrag. P-bits fluctueren met een bepaalde waarschijnlijkheid tussen 0 en 1, terwijl Q-bits in een superpositie van zowel 0 als 1 kunnen bestaan ​​totdat ze worden gemeten.

Potentieel voor kwantumachtig gedrag: Onderzoekers hebben aangetoond dat netwerken van P-bits bepaalde kwantumfenomenen kunnen benaderen, zoals kwantumannealing. Dit suggereert dat P-bits mogelijk enkele voordelen van quantum computing kunnen nabootsen.


Verschillen

Fysieke implementatie: P-bits zijn klassieke entiteiten die kunnen worden geïmplementeerd met behulp van bestaande elektronica, terwijl Q-bits gespecialiseerde kwantumhardware nodig hebben om hun delicate kwantumtoestanden te behouden.

Kwantumeigenschappen: Q-bits bezitten unieke kwantumeigenschappen zoals superpositie en verstrengeling, waardoor ze berekeningen kunnen uitvoeren op manieren die klassieke computers niet kunnen. P-bits hebben weliswaar probabilistisch, maar niet deze specifieke kwantumeigenschappen.


Samenvatting

P-bits kunnen worden gezien als een brug tussen klassieke en kwantumcomputers. Ze bieden een veelbelovende aanpak om de kracht van probabilistisch computergebruik te benutten met behulp van bestaande technologie, terwijl ze ook mogelijk enkele aspecten van kwantumgedrag nabootsen. Ze bezitten echter niet het volledige scala aan kwantumeigenschappen die Q-bits bieden.


Aanvullende aandachtspunten

P-bits zijn een relatief nieuw concept en hun volledige potentieel wordt nog steeds onderzocht.

Er wordt onderzoek gedaan om de mogelijkheden en beperkingen van P-bits verder te begrijpen.

P-bits kunnen toepassingen vinden in verschillende vakgebieden, waaronder machine learning, optimalisatie en materiaalkunde.

Artikelen van bedrijven die werken aan probabilistisch computergebruik

Intel-chipmaker start R&D-inspanningen voor zelfrijdende auto's met behulp van probabilistisch computergebruik.

Extropic baant de weg naar thermodynamisch computergebruik.

Bron (google gemini)

What is Probabilistic Computing?

Probabilistic computing is a new type of computing that can be used for AI. It uses the physics of the world to compute and predict. This is done mutch faster and in a much less energy consumption way.
  • A field that focuses on building systems that can handle and reason with uncertainty.
  • Leverages probabilistic algorithms, models, and methods.
  • Aims to make computers understand and reason about the world with uncertainty, just like humans do.

Why is it Important?

  • Real-world complexity: Most real-world problems are inherently uncertain and incomplete.
  • Human-like reasoning: Probabilistic computing allows computers to mimic human-like reasoning in the face of uncertainty.
  • Better decision-making: By quantifying uncertainty, computers can make more informed and robust decisions.

Key Concepts and Techniques

  • Probabilistic Models:
    • Bayesian Networks: Represent relationships between variables and their probabilities.
      Afbeelding van Bayesian Network
    • Markov Models: Model sequences of events and their dependencies.
      Afbeelding van Markov Model
  • Probabilistic Programming Languages:
    • Allow for the specification of probabilistic models and automatic inference.
    • Examples: Stan, PyMC3, Edward.
  • Monte Carlo Methods:
    • Simulate random processes to estimate probabilities and expectations.
      Afbeelding van Monte Carlo Simulation
  • Uncertainty Quantification:
    • Measures the uncertainty in model predictions and outputs.

Applications

Probabilistic computing has a wide range of applications:

  • Machine Learning:
    • Building more robust and interpretable models.
    • Handling noisy and incomplete data.
  • Robotics:
    • Enabling robots to make decisions in uncertain environments.
  • Computer Vision:
    • Improving image and video analysis by accounting for uncertainty.
  • Natural Language Processing:
    • Understanding and generating natural language with uncertainty.
  • Healthcare:
    • Analyzing medical data to make predictions and decisions.
  • Finance:
    • Modeling financial risks and making investment decisions.

Advantages

  • Robustness: Probabilistic models can handle uncertainty and noise in data.
  • Interpretability: Probabilistic models are often easier to understand than deterministic ones.
  • Adaptability: Probabilistic models can adapt to changing environments and new information.

Challenges

  • Computational Complexity: Probabilistic methods can be computationally expensive.
  • Model Complexity: Building accurate and complex probabilistic models can be challenging.
  • Data Requirements: Probabilistic models often require large amounts of data

What are P-Bits?
Unlike conventional computers, that are using 1's and 0's to calculate, Probabilistic Computing is done with P-bits. These bits are between normal bits and Q-Bits (Quantum bits, used in quantum computing)

Similarities:

  • Probabilistic Nature: Both P-bits and Q-bits exhibit probabilistic behavior. P-bits fluctuate between 0 and 1 with a certain probability, while Q-bits can exist in a superposition of both 0 and 1 states until measured.
  • Potential for Quantum-Like Behavior: Researchers have shown that networks of P-bits can approximate certain quantum phenomena, such as quantum annealing. This suggests that P-bits may be able to mimic some of the advantages of quantum computing.

Differences

  • Physical Implementation: P-bits are classical entities that can be implemented using existing electronics, while Q-bits require specialized quantum hardware to maintain their delicate quantum states.
  • Quantum Properties: Q-bits possess unique quantum properties like superposition and entanglement, which allow them to perform computations in ways that classical computers cannot. P-bits, while probabilistic, do not have these specific quantum properties. 

Summary

P-bits can be seen as a bridge between classical and quantum computing. They offer a promising approach to harnessing the power of probabilistic computing using existing technology, while also potentially emulating some aspects of quantum behavior. However, they do not possess the full range of quantum properties that Q-bits offer.  

Additional Points to Consider:

  • P-bits are a relatively new concept, and their full potential is still being explored.
  • Research is ongoing to further understand the capabilities and limitations of P-bits.
  • P-bits may find applications in various fields, including machine learning, optimization, and materials science.
Articles of companys that are working on Probabalistic computing



Source (google gemini)

Rich Dad Poor Dad by Robert Kiyosaki

Everyone has to see this 2 videos about Rich Dad, Poor Dad. The videos are a summary of the book. The two videos literary shows you easily the difference between how a rich man thinks vs. how a poor man thinks. It's something nobody was told or teached in school but it can turn your poor life into a truly rich life. Viewing these videos will make you rich and escape the ratrace.



.

Het virtuele AI Brain van Google DeepMind kan leiden tot nieuwe inzichten over ons eigen brein

 Google DeepMind is een AI van de volgende generatie die bijna zelf kan denken zoals onze hersenen dat doen!

Google heeft gewerkt aan AI-modellen die aspecten van de hersenen kunnen simuleren. Het is echter niet één enkel ‘virtueel AI-brein’. Het kan vooral bewegingen nabootsen door te begrijpen hoe de hersenen functioneren als een bepaalde beweging wordt gemaakt. Het kan zelfs anticiperen op nieuwe situaties die nog nooit eerder zijn voorgekomen en reageren met de juiste bewegingen. Hun recente werk betrof een virtuele rat met een door AI aangedreven ‘brein’ dat was ontworpen om na te bootsen hoe echte ratten bewegen. Dit helpt ons de neurale circuits die verband houden met beweging te begrijpen. Het is meer een specifiek hulpmiddel om de hersenen te begrijpen, en niet een vervanging ervan.


De virtuele rat van Google DeepMind

Deze rat is een fascinerend project dat de grenzen van kunstmatige intelligentie en neurowetenschappen verlegt.


Wat is het?

Onderzoekers van DeepMind werkten samen met Harvard University om een ​​virtueel knaagdier te creëren met een door AI aangedreven ‘brein’.

Deze virtuele rat bevindt zich in een gesimuleerde omgeving en kan zich realistisch verplaatsen, waarbij hij de bewegingen van echte ratten nabootst.


Hoe werkt het?

Het 'brein' van de virtuele rat is een kunstmatig neuraal netwerk dat is getraind op gegevens van echte ratten.

Deze gegevens zijn afkomstig van opnames van echte ratten die zich in een fysieke arena verplaatsen.

De AI gebruikt deze gegevens om te leren hoe hij het lichaam van de virtuele rat in de gesimuleerde omgeving kan besturen.


Wat is het doel?

Het belangrijkste doel is om te begrijpen hoe de hersenen beweging controleren.

Door te bestuderen hoe de virtuele rat beweegt, kunnen onderzoekers inzicht krijgen in de neurale circuits die verantwoordelijk zijn voor de voortbeweging van echte dieren.

Deze kennis kan waardevol zijn voor gebieden als neurowetenschappen, robotica en zelfs fysiotherapie.


Gecontroleerde omgeving

Onderzoekers kunnen de virtuele omgeving manipuleren om specifieke factoren te isoleren en hun impact op beweging te bestuderen.

Veiligheid en ethiek: Het elimineert de noodzaak van dierproeven in bepaalde situaties.

Snelheid en efficiëntie: Onderzoekers kunnen snel en efficiënt talloze simulaties uitvoeren.


Focus op beweging

Het huidige model richt zich op motorische controle en repliceert niet de volledige complexiteit van de hersenen van een echte rat.

Nauwkeurigheid: hoewel realistisch, kan het zijn dat de virtuele omgeving niet alle nuances van de echte wereld perfect weergeeft.

De virtuele rat van Google DeepMind is een belangrijke stap voorwaarts in het begrijpen hoe de hersenen werken. Het biedt een waardevol hulpmiddel voor onderzoekers en maakt de weg vrij voor verder onderzoek op het gebied van AI en neurowetenschappen.


Beperkte reikwijdte

Deze AI-modellen richten zich op specifieke aspecten van de hersenen, zoals de motorische controle in het rattenvoorbeeld. Het menselijk brein is veel complexer, met functies als geheugen, emoties en bewustzijn die deze modellen niet kunnen repliceren.


Biologische verschillen

De AI-modellen zijn gebouwd op kunstmatige neurale netwerken, die geïnspireerd zijn door de hersenen maar niet identiek zijn. De biologische processen van het menselijk brein zijn ingewikkeld en nog steeds niet volledig begrepen. Dus, wat zijn de voordelen?


Nieuwe inzichten

Deze AI-modellen kunnen ons helpen de hersenen te verkennen op manieren die met traditionele methoden niet mogelijk zouden zijn.

Onderzoek kan worden versneld. omdat experimenten veel sneller kunnen worden gesimuleerd dan studies uit de echte wereld, waardoor onderzoekers snel verschillende hypothesen kunnen testen.


De toekomst

Het werk van DeepMind is een opstapje. Naarmate het onderzoek op het gebied van AI en neurowetenschappen vordert, zien we mogelijk steeds geavanceerdere modellen die licht kunnen werpen op verschillende aspecten van de hersenfunctie.

Het uiteindelijke doel is om een ​​dieper inzicht in de hersenen te krijgen, wat mogelijk kan leiden tot doorbraken in de geneeskunde, hersen-computerinterfaces en de kunstmatige intelligentie zelf.

Google DeepMind's virtual AI Brain brings can lead to new insights about our own brain

Google DeepMind is a next generation AI that almost can think for it self like our brains do!

Google has been working on AI models that can simulate aspects of the brain. However, it's not a single 'virtual AI brain'. It mainly can mimic movements by understanding how the brain functions when a certain movement is made. Is can even anticipate on new situations that never happend before and respond with the wright movements. Their recent work involved a virtual rat with an AI-powered 'brain' designed to mimic how real rats move. This helps us understand the neural circuits related to movement. It's more like a specific tool for understanding the brain, not a replacement for it.


The virtual rat by Google DeepMind

This rat is a fascinating project that pushes the boundaries of artificial intelligence and neuroscience.


What is it?

Researchers from DeepMind collaborated with Harvard University to create a virtual rodent with an AI-powered 'brain'.

This virtual rat exists within a simulated environment and can move around realistically, mimicking the movements of real rats.


How does it work?

The virtual rat's 'brain' is an artificial neural network trained on real rat data.

This data comes from recordings of real rats moving around in a physical arena.

The AI uses this data to learn how to control the virtual rat's body in the simulated environment.


What's the purpose?

The main goal is to understand how the brain controls movement.

By studying how the virtual rat moves, researchers can gain insights into the neural circuits responsible for locomotion in real animals.

This knowledge could be valuable for fields like neuroscience, robotics, and even physical therapy.


Controlled environment

Researchers can manipulate the virtual environment to isolate specific factors and study their impact on movement.

Safety and ethics: It eliminates the need for animal testing in certain situations.

Speed and efficiency: Researchers can run countless simulations quickly and efficiently.


Focus on movement

The current model focuses on motor control, not replicating the full complexity of a real rat's brain.

Accuracy: While realistic, the virtual environment might not perfectly capture all the nuances of the real world.

Google DeepMind's virtual rat is a significant step forward in understanding how the brain works. It offers a valuable tool for researchers and paves the way for further exploration in AI and neuroscience.


Limited Scope

These AI models focus on specific aspects of the brain, like motor control in the rat example. The human brain is vastly more complex, with functions like memory, emotions, and consciousness that these models can't replicate.


Biological Differences

The AI models are built on artificial neural networks, which are inspired by the brain but not identical. The human brain's biological processes are intricate and still not fully understood. So, what are the benefits?


New Insights

These AI models can help us explore the brain in ways that wouldn't be possible with traditional methods.

Reseearch can be speed up. because experiments can be simulate much faster than real-world studies, allowing researchers to test different hypotheses quickly.


The Future

DeepMind's work is a stepping stone. As AI and neuroscience research progress, we might see more sophisticated models that can shed light on different aspects of brain function.

The ultimate goal is to gain a deeper understanding of the brain, potentially leading to breakthroughs in medicine, brain-computer interfaces, and artificial intelligence itself.

Kuantumcomputing gecombineerd met AI, een nieuwe superkracht

 Kwantumcomputing en AI zijn tegenwoordig twee van de meest veelbelovende technologiegebieden, en als je ze samenvoegt, worden de zaken nog spannender. Hier is een overzicht van deze krachtige combinatie:


Wat is kwantum-AI?

Quantum AI, ook wel bekend als quantum machine learning, is een veld dat de sterke punten van beide gebieden combineert. Hier is het basisidee:

Reguliere AI blinkt uit in het leren van data en het maken van voorspellingen, maar wordt beperkt door de traditionele computers waarop het draait.

Kwantumcomputers daarentegen maken gebruik van de vreemdheid van de kwantummechanica om berekeningen uit te voeren op manieren die voor klassieke computers onmogelijk zijn. Hierdoor kunnen ze problemen aanpakken die gewone computers jaren, zo niet eeuwen, zouden kosten om op te lossen.

Door de leerkracht van AI te combineren met de verwerkingskracht van quantum computing, heeft quantum AI het potentieel om een ​​revolutie teweeg te brengen in verschillende industrieën.


Hoe werkt het?

Er zijn twee belangrijke onderzoeksgebieden op het gebied van kwantum-AI:

Versnellen van AI-algoritmen: Kwantumcomputers kunnen bepaalde soorten problemen veel sneller oplossen dan klassieke computers. Dit zou taken zoals het trainen van complexe machine learning-modellen of het optimaliseren van logistieke netwerken aanzienlijk kunnen versnellen.

Kwantumneurale netwerken: dit is een zich ontwikkelend veld dat geheel nieuwe manieren verkent om AI-modellen te structureren op basis van de principes van de kwantummechanica. Deze modellen kunnen mogelijk nog complexere problemen en gegevens verwerken dan de huidige AI.


Wat zijn de mogelijke toepassingen?

Quantum AI heeft het potentieel om een ​​breed scala aan velden te beïnvloeden, waaronder:

Geneesmiddelenontdekking: moleculen simuleren om nieuwe levensreddende medicijnen te ontwerpen

Materiaalkunde: nieuwe materialen ontdekken met unieke eigenschappen

Financiën: Ontwikkeling van meer geavanceerde financiële modellen en instrumenten voor risicoanalyse

Kunstmatige intelligentie zelf: Quantum AI zou kunnen worden gebruikt om nog krachtigere AI-algoritmen te ontwerpen


Uitdagingen en overwegingen

Hoewel het potentieel van kwantum-AI enorm is, zijn er nog steeds aanzienlijke uitdagingen die moeten worden overwonnen:

Kwantumcomputers bevinden zich nog in de beginfase van hun ontwikkeling. Ze zijn duur, gevoelig voor fouten en moeilijk te programmeren.

Het aanpassen van bestaande AI-algoritmen om op kwantumcomputers te werken is een voortdurend onderzoeksgebied.


Risico's van AI op kwantumcomputers

Hoewel het potentieel van AI op kwantumcomputers opwindend is, zijn er enkele potentiële risico’s waarmee rekening moet worden gehouden:

Beveiliging (encrypty): Traditionele codering is gebaseerd op complexe wiskundige problemen die voor klassieke computers moeilijk te kraken zijn. Kwantumcomputers zouden deze versleutelingsmethoden echter mogelijk kunnen doorbreken, waardoor gevoelige gegevens in gevaar komen. Dit kan van invloed zijn op alles, van online bankieren tot beveiligde communicatie.

Schadelijke AI wordt versterkt: AI-systemen zijn al in staat deepfakes te genereren en desinformatie te verspreiden. Met de kracht van een kwantumcomputer zou AI nog bedrevener kunnen worden in deze taken, waardoor het moeilijker wordt om waarheid van fictie te onderscheiden.

Ongelijke toegang: Quantum computing is een complexe en dure technologie. Als slechts een paar landen of bedrijven toegang hebben tot krachtige kwantumcomputers, zou dit een aanzienlijk voordeel kunnen opleveren op gebieden als de nationale veiligheid en technologische ontwikkeling.

Uitdagingen bij de ontwikkeling van AI: Hoewel kwantumcomputers sommige AI-taken kunnen versnellen, introduceren ze ook nieuwe uitdagingen. Het ontwikkelen en trainen van AI-algoritmen voor kwantumcomputers is een complex en voortdurend onderzoeksgebied. Het risico bestaat dat een te sterke focus op kwantum-AI de vooruitgang op meer gevestigde AI-gebieden kan vertragen.

Onvoorziene gevolgen: Zoals bij elke krachtige technologie bestaat er altijd een risico op onvoorziene gevolgen. De enorme verwerkingskracht van kwantum-AI zou kunnen leiden tot onbedoelde resultaten die moeilijk te voorspellen of te controleren zijn.

Hier volgen enkele dingen die onderzoekers en ontwikkelaars doen om deze risico's te beperken:

Het ontwikkelen van nieuwe, kwantumbestendige encryptiemethoden om gegevens te beschermen, zelfs in het tijdperk van kwantumcomputers.

Het creëren van ethische richtlijnen voor de ontwikkeling en het gebruik van quantum AI.

Het bevorderen van internationale samenwerking om ervoor te zorgen dat kwantumcomputing de hele mensheid ten goede komt.

De combinatie van AI en quantum computing een krachtig hulpmiddel met een enorm potentieel. Door ons bewust te zijn van de risico's en stappen te ondernemen om deze te beperken, kunnen we ervoor zorgen dat deze technologie voorgoed wordt gebruikt. De combinatie van kwantumcomputing en AI is een veelbelovend gebied met het potentieel om op verschillende gebieden een revolutie teweeg te brengen. Het staat echter nog in de kinderschoenen en er moeten nog hindernissen worden overwonnen voordat deze technologie zijn volledige potentieel bereikt.

Quantum computing combined with AI, a new superpower

Quantum computing and AI are two of the most promising fields in technology today, and when you put them together, things get even more exciting. Here's a breakdown of this powerful combination:


What is quantum AI?

Quantum AI, also known as quantum machine learning, is a field that merges the strengths of both these areas. Here's the basic idea:

Regular AI excels at learning from data and making predictions, but it's limited by the traditional computers it runs on.

Quantum computers, on the other hand, leverage the strangeness of quantum mechanics to perform calculations in ways that are impossible for classical computers. This lets them tackle problems that would take regular computers years, if not centuries, to solve.

By combining AI's learning power with quantum computing's processing muscle, quantum AI has the potential to revolutionize various industries.


How does it work?

There are two main areas of research in quantum AI:

Speeding up AI algorithms: Quantum computers can solve certain types of problems much faster than classical computers. This could significantly accelerate tasks like training complex machine learning models or optimizing logistics networks.

Quantum neural networks: This is a developing field that explores entirely new ways to structure AI models based on the principles of quantum mechanics. These models could potentially handle even more complex problems and data than current AI can.


What are the potential applications?

Quantum AI has the potential to impact a wide range of fields, including:

Drug discovery: Simulating molecules to design new life-saving drugs

Materials science: Discovering new materials with unique properties

Finance: Developing more sophisticated financial models and risk analysis tools

Artificial intelligence itself: Quantum AI could be used to design even more powerful AI algorithms


Challenges and considerations

While the potential of quantum AI is vast, there are still significant challenges to overcome:

Quantum computers are still in their early stages of development. They're expensive, prone to errors, and difficult to program.

Adapting existing AI algorithms to work on quantum computers is an ongoing area of research.


Risks of AI on quantum computers

While the potential of AI on quantum computers is exciting, there are some potential risks to consider:

Broken encryption: Traditional encryption relies on complex math problems that are difficult for classical computers to crack. However, quantum computers could potentially break these encryption methods, putting sensitive data at risk. This could affect everything from online banking to secure communications.

Malicious AI amplified:  AI systems are already capable of generating deepfakes and spreading misinformation. With the power of a quantum computer, AI could become even more adept at these tasks, making it harder to distinguish truth from fiction.

Uneven access: Quantum computing is a complex and expensive technology. If only a few countries or companies have access to powerful quantum computers, it could create a significant advantage in areas like national security and technological development.

AI development challenges:  While quantum computers can accelerate some AI tasks, they also introduce new challenges.  Developing and training AI algorithms for quantum computers is a complex and ongoing area of research. There's a risk that focusing too heavily on quantum AI could slow down progress in more established AI fields.

Unforeseen consequences: As with any powerful technology, there's always a risk of unforeseen consequences. The immense processing power of quantum AI could lead to unintended outcomes that are difficult to predict or control.

Here are some things researchers and developers are doing to mitigate these risks:

Developing new, quantum-resistant encryption methods to protect data even in the age of quantum computers.

Creating ethical guidelines for the development and use of quantum AI.

Promoting international collaboration to ensure that quantum computing benefits all of humanity.

The combination of AI and quantum computing is a powerful tool with immense potential. By being aware of the risks and taking steps to mitigate them, we can ensure that this technology is used for good. Quantum computing and AI is a promising area with the potential to revolutionize various fields. However, it's still early days, and there are hurdles to overcome before this technology reaches its full potential.

Nvidia H100 the fastest AI processor in the world ensures higher stock market prices

The Nvidia H100 AI chip has a positive impact on Nvidia's stock market figures. The enormous demand from technology companies such as Facebook and the interest of Arab countries in the fastest AI processor in the world, contribute to this. The development of the H200, which is expected to be twice as fast gives a further boost to Nvidia's position in the market.


Some details

The H100 offers a significant performance improvement over its predecessors, making it ideal for demanding AI applications such as machine learning, deep learning and natural language processing.

The chip is also more energy efficient, which is important for data centers that train and run large volumes of AI models.

The demand for AI technology is growing rapidly and Nvidia is well positioned to capitalize on this trend with the H100.


The stock market reaction

Nvidia's stock price has risen in recent months, partly due to strong demand for the H100.

Analysts are largely positive about the chip and expect it to make an important contribution to Nvidia's future growth.


The future

The development of the H200 is an exciting development that will further expand the possibilities of AI technology.

Nvidia is a leader in the AI ​​market and the H100 and H200 are expected to strengthen this position.


Some additional points

The H100 is the first AI chip to use Nvidia's Hopper architecture.

The chip has 80 teraflops of AI performance, which is 30 times faster than the previous generation.

The H100 is used by a wide range of companies including Google, Microsoft, Amazon and Tencent.

The chip is also used by research institutes and universities around the world.


The Nvidia H100 AI chip is a major technological advancement that will shape the future of AI. The chip has a positive impact on Nvidia's stock market figures and is expected to make an important contribution to the company's future growth 

source: Google Gemini.

Nvidia H100 de snelste AI processor ter wereld zorgt voor hoge beurscijfers

De Nvidia H100 AI-chip heeft een positieve impact op de beurscijfers van Nvidia. De enorme vraag van technologiebedrijven zoals Facebook, en de interesse van Arabische landen in de snelste AI-processor ter wereld, dragen hieraan bij. De ontwikkeling van de H200, die naar verwachting twee keer zo snel zal zijn, is een verdere stimulans voor de positie van Nvidia in de markt.


Enkele details

De H100 biedt een aanzienlijke prestatieverbetering ten opzichte van zijn voorgangers, waardoor hij ideaal is voor veeleisende AI-toepassingen zoals machine learning, deep learning en natural language processing.

De chip is ook energiezuiniger, wat belangrijk is voor datacenters die grote hoeveelheden AI-modellen trainen en uitvoeren.

De vraag naar AI-technologie groeit snel, en Nvidia is goed gepositioneerd om te profiteren van deze trend met de H100.


De beursreactie

De aandelenkoers van Nvidia is de afgelopen maanden gestegen, deels vanwege de sterke vraag naar de H100.

Analisten zijn overwegend positief over de chip en verwachten dat deze een belangrijke bijdrage zal leveren aan de toekomstige groei van Nvidia.


De toekomst

De ontwikkeling van de H200 is een spannende ontwikkeling die de mogelijkheden van AI-technologie verder zal vergroten.

Nvidia is een leider in de AI-markt en de H100 en H200 zullen deze positie naar verwachting versterken.


Enkele aanvullende punten

De H100 is de eerste AI-chip die gebruikmaakt van Hopper-architectuur van Nvidia.

De chip heeft 80 teraflops aan AI-prestatie, wat 30 keer sneller is dan de vorige generatie.

De H100 wordt gebruikt door een breed scala aan bedrijven, waaronder Google, Microsoft, Amazon en Tencent.

De chip wordt ook gebruikt door onderzoeksinstituten en universiteiten over de hele wereld.


De Nvidia H100 AI-chip is een belangrijke technologische vooruitgang die de toekomst van AI zal bepalen. De chip heeft een positieve impact op de beurscijfers van Nvidia en zal naar verwachting een belangrijke bijdrage leveren aan de toekomstige groei van het bedrijf.

Bron: Google Gemini

Unicode characters csv and xlsx list free download


These are almost every special characters (Latin, Mandarin, Japanese, Arabic and many more) with
their unicode.

Normaly a Unicode is displayed like: U+006B but the U+ is not added to the unicode in these lists. These lists are free to download and use. 


Files included in the zip file

release notes v0.3.txt
unicode common characters v0.3.csv (UTF-8 formated with BOM)
unicode common characters v0.3.xlsx
unicode numbers v0.3.csv (UTF-8 formated with BOM)
unicode numbers v0.3.xlsx
unicode special characters v0.3.csv (UTF-8 formated with BOM)
unicode special characters v0.3.xlsx

Can't open the zip file? Use WinRAR one of the best unzip apps.

Help with displaying issues

If you copy these characters to a format like csv or txt please take note you save the csv file as UTF8 with BOM or in the unicode format. Also note that some fonts can't display certain characters. Stick with Calabri, Arial or use the more advanced Noto font. This way the characters can be displayed properly. 

Release notes


Release version 0.3

Many double characters removed, some are still there but will be removes in new releases.
Wrong unicodes corrected, some are still incorrect but will be corrected in new releases.
Special characters: 69.430
Numeric characters: 86
Normal characters: 65

Release version 0.2

All Chinese and Korean characters are added.
Wrong unicodes are corrected, some are still incorrect, will be corrected in new releases.
Special characters: 70.018
Numeric characters: 86
Normal characters: 65

Release version 0.1

This is the first version of the list, note that this list is not yet a complete list of all unicode charcters available. We do our best to ad more characters in the next releases.
We are aware of some double and wrong unicodes in the list but we are working on it to resolve this problem.
Special characters: 40.701
Numeric characters: 79
Normal characters: 65

Copyright: byWM